Population Health Management for analysts

11 week course: 16th January – 30th March 2023

Population Health Management for analysts

11 week course: 16th January – 30th March 2023

This course will provide analysts with a comprehensive overview of the Population Health Management (PHM) cycle and the approaches taken at each step, including details of the analytical tools and methods which will allow you to carry out PHM in your area. The initial sessions will introduce the foundations of R programming and statistics, while later ones will focus on examining key methods and techniques for population segmentation, risk stratification, impactibility modelling and causal inference.

There will be lectures, practical activities, interactive sessions and useful examples, and plenty of opportunity for discussion and questions.

The course will cover the need to look beyond just ‘care’ and to look at ‘health’ and the wider determinants of health more broadly. It will also consider the need to work with additional stakeholders and the challenges that systems face when they have potentially conflicting goals and measures of success.

Learning Outcomes

  • An understanding of what the PHM cycle and of how PHM thinking/methods can benefit your population.
  • An introduction to programming in R and data exploration.
  • The ability to articulate and know when to apply PHM analytical techniques, including an understanding of how to select algorithms appropriate to the data available.
  • The ability to apply, interpret and evaluate segmentation, risk stratification, impactibility modelling, and causal inference techniques.
  • An understanding of the underlying need for health systems, the challenges that systems face working together, and potential ways to address those challenges.

Audience and prerequisites

You don’t need to have attended previous training sessions to understand this one.

This course is designed for analysts and those who have an interest in population health management and R. Numeracy skills will be assumed for the technical sessions.

If you are looking for a less technical course – please sign up to Population Health Management, which covers the core curriculum but omits the programming and analytics sessions.

Sessions

Basic Introduction to PHM

16th Jan 1-3

What is population health management and how can it help us deliver better health and care? This session offers an overview of what population health management is, its benefits, and methods used to analyse population health.

It will equip you with the ability to articulate and know when to apply population health management techniques

Introduction to R for PHM

24th Jan 1-3

R can be a powerful tool in population health management. This session uses real-world examples to give an understanding of how to use R in population health management and the fundamental building-blocks of R.

Introduction to Statistics for PHM

2nd Feb 1-3

Join our expert statisticians in understanding statistical metrics and how to apply these in R. In this session you will learn how to apply statistical testing in R, and gain an appreciation of the use of statistics in modelling.

Understanding population segmentation for your local population

7th Feb 1-3

None of the technical language, all of the benefits! This session will give you an understanding of what segmentation is and the ability to interpret and evaluate segmentation analysis.

How systems work together

15th Feb 1-3

Using real-world examples, this session will provide you with an understanding of the benefits of integrated care for population health.

We’ll take a look at how and when systems work well together and the common challenges, and explore the tools which can support how system relationships can be measured.

Doing population segmentation for your local population

21st Feb 1-3

Using standard methods of performing segmentation, including k-means clustering, DBSCAN, and hierarchical clustering, we’ll be exploring what segmentation is and how it can be valuable in population health management.

Understanding risk prediction and stratification for your local population

2nd Mar 1-3

Your straight-forward guide to the principles of risk stratification.

Join our expert team exploring how to interpret and evaluate risk stratification analysis.

Doing risk prediction and stratification for your local population

10th Mar 10-12

Go beyond the principles and dive into an overview of modelling, including the formulation, implementation and validation of techniques, along with good practices.

Understanding impactibility for your local population

14th Mar 1-3

What is impactibility and what does it mean for your population? Join this session to find out and learn the ability to interpret and evaluate impactibility analysis

Doing causal inference for impactibility assessments for your local population

24th Mar 1.30-3.30

How can causal inference help in PHM and how do you do it? This session offers an understanding of the role, language, and approaches of causal inference in healthcare.

Closing the PHM cycle: An introduction to Evaluation

30th Mar 1-3

Once you’ve learned the principles and techniques of PHM, how can you tell if they’re working? This session looks at the need for evaluating PHM interventions and how you can measure their effectiveness in your area.

Audience

This course is free and available to all those working in the Midlands Public Health and Social Care sector , e.g. NHS, Public Health, Local Authority, ICBs

Duration
2 hours
1.00 – 3.00 pm

Dates

  • 16/01/23
  • 24/01/23
  • 02/02/23
  • 07/02/23
  • 15/02/23
  • 21/02/23
  • 02/03/23
  • 10/03/23
  • 14/03/23
  • 24/03/23
  • 30/03/23

Location
Online – delivered via Teams

Registration for the Population Health Management for analysts course is now closed.

Please do consider signing up to Population Health Management, which covers the core curriculum but omits the programming and analytics sessions.

About the trainers

Andi Orlowski, director

Andi is a health economist with particular interest in population health analytics, especially addressing health inequalities and the concept of impactibility modelling. He is researching this for his PhD at Imperial College London. He is also a senior advisor for NHS England on population health management in the Operations and Information Directorate and works with STPs and ICSs across the country. Read Andi’s full biography.

 

David Sgorbati, chief analyst

David is an experienced computer scientist who has worked in several national, regional, ICS and provider teams in the NHS, contributing to the deploymentof machine learning techniques. Since joining the NHS in 2014, his focus has been on using advanced analytics techniques to support problem-solving across organisational boundaries; he is passionate about the use of data as a tool to foster better conversations and to generate actionable insights. Read David’s full biography.

 

Heather Humphreys, health economist

Heather has degrees in Biochemistry and Economics and a Master’s in Public Health, and is pursuing an MSc in Health Economics, Policy and Management. She is passionate about using data to address health economics and has developed courses on the subject. She has experience in qualitative and quantitative datasets, has worked within both the USA and UK health systems, and is particularly interested in population health and allocative efficiency in health. Read Heather’s full biography.

 

Jack Ettinger, senior health economist

Jack is a health economist with experience in qualitative and quantitative

research, driven by the belief that a health economic approach will benefit the NHS and patients. He has worked in service management, commissioning and national policy, and is currently completing an MSc in Public Health at the London School of Hygiene and Tropical Medicine. He joined the Health Economics Unit from NHS England where he worked chiefly on COVID-19 vaccine delivery. Read Jack’s full biography.

Joseph Lillington, senior data scientist

Joseph has broad experience across both data science and healthcare.

He previously gained degrees from Edinburgh, Imperial, and Cambridge. He then completed his PhD thesis in machine learning and computational modelling at the University of Cambridge, before joining the HEU. Passionate about applying his extensive data science knowledge within healthcare systems, he strongly believes in the value of data-driven solutions to improve patient outcomes. Read Joe’s full biography.

Santosh Kumar, lead data scientist

Santosh is a dedicated researcher with significant experience in applying advanced machine learning techniques and natural language processing to solve data-driven problems. He is passionate about improving healthcare systems through applications of machine learning, and has used this technique to great success. A keen collaborator, Santosh is happiest when he can apply and extend his expertise in machine learning to provide greatest benefit to the population. Read Santosh’s full biography.

 

Sophie Hodges, lead client service manager

With a background in population health management, Sophie is passionate about providing better evidence to improve decision making in healthcare. She has a first-class degree in Economics with Econometrics (BSc) from the University of Kent and will soon complete a masters in Health Data Analytics (MSc) from UCL. Sophie also has experience in building communities of practice supporting analytical upskilling and developing system intelligence functions. Read Sophie’s full biography.

 

William Rawlinson, senior health economist

Will is a health economist with experience in cost-effectiveness analysis and health technology assessment processes, having led the development of numerous cost-effectiveness models, budget impact models, and other health economic models. He is interested in the application of NHS real-world data in health economic modelling, and in the adoption of R as a modelling software. Read William’s full biography.

 

 

Yihan Xu, senior health economist

Yihan is passionate about exploring and delivering smart and budget-friendly solutions that improve public health. She has extensive experience in examining and synthesising scientific data to inform and improve the delivery of government services in public health and education, and most recently, she collaborated on a project that enhanced the government’s COVID-19 response. Read Yihan’s full biography.

 

For more information about this course, please contact:

Training & Development Operational Lead, Rachel Caswell